Molecular properties in quantum chemistry

Monika Musiał

Department of Theoretical Chemistry

Outline

- Main computational schemes for correlated calculations
- Development of the ab initio methods for the calculation of molecular properties.

Literature

- L. Piela, Idee Chemii Kwantowej, PWN, Warszawa, 2003.
- R. J. Bartlett, M. Musial, Rev. Mod. Phys., 79, 291-352 (2007).
- M. Musiał, Mol. Phys., 108, 2921 (2010).
- M. Jaworska, M. Musiał, T. Pluta, Wybrane zagadnienia chemii kwantowej, Uniwersytet Śląski (2009).
- J. F. Stanton, R. J. Bartlett, J. Chem. Phys., 98, 7029 (1993).
- J. F. Stanton, J. Chem. Phys., 99, 8840 (1993).

Computational methods of quantum chemistry based on the wave function – Ψ

Born-Oppenheimer approximation

Electronic Schrödinger equation:

$$H\Psi = E\Psi$$

Computational strategy in the wave function based calculations

Two-step approach to the solution of the Schrödinger equation:

- construction of the wave function within the 1-electron approximation (independent particle model): Hartree-Fock method
- post-Hartree-Fock approach: determination of electronic correlation

Computational strategy in the wave function based calculations

Hartree-Fock

(also known as a mean field approach)

Determination of (spin)orbitals

Self Consistent Field (SCF) method

 $E_{HF} \sim 99\%$ of total energy

RHF vs. UHE

- RHF(Restricted Hartree-Fock) closed shell molecules, $\frac{N}{2}$ orbitals (doubly occupied)
- UHF(Unrestricted Hartree-Fock) open shell molecules, l spinorbitals with the α spin and k spinorbitals with the β spin (DODS Different Orbitals for Different Spins)

RHF vs. UHF

UHF

UHF cons:

- incorrect spin
- problems with convergence

UHF pros:

size-consistent (extensive)

RHF

RHF cons:

incorrect dissociation limit (in standard formulation)

RHF pros:

- well defined spin
- good convergence for HF equations

RHF vs. UHF

Computational strategy in the wave function based calculations

Determination of correlation energy

Perturbation theory (MPn)
Configuration Interaction (CI)
Coupled Cluster (CC)

Correlation energy

$$\mathbf{H}\Psi = \mathbf{E}\Psi$$

Expressing the wave function Ψ as a linear combination of (ground and excited) state configurations:

$$\begin{split} \Psi &= \Phi_o + \Sigma_{a,i} c^a_i \Phi^a_i \\ &+ \Sigma_{a,b,i,j} c^{ab}_{ij} \Phi^{ab}_{ij} \\ &+ \Sigma_{a,b,c,i,j,k} c^{abc}_{ijk} \Phi^{abc}_{ijk} \\ &+ \end{split}$$

Configurations

```
<u>↑↓</u>
<u>↑↓</u>
<u>↑↓</u>
<u>↑↓</u>
                                                                           egin{array}{c} oldsymbol{\Phi}_{ij}^{ab} \ \hat{\mathbf{T}}_2 \end{array}
                                                                                  egin{array}{l} oldsymbol{\Phi_i^a} \ \hat{\mathbf{T}}_1 \end{array}
              \Phi_{\mathrm{o}}
                                                                                    \hat{\mathbf{C}}_{\mathbf{1}}
                                                                                                                                                        \hat{\mathbf{C}}_2
                                                                                                                                                                                                                              \hat{\mathbf{C}}_3
```

CCD, CCSD, CCSDT, CCSDTQ, ..., FULL CC CID, CISD, CISDT, CISDTQ, ..., FULL CI

Expansion coefficients are obtained using:

 perturbation theory → Moeller-Plesset corrections: MP2, MP3, ...

$$V = \sum_{i>j} \frac{1}{r_{ij}} - \sum_{q} (J_q - K_q)$$

2 linear parametrization of the wave function $\Psi = (1+C)\Phi_o$

Configuration Interaction method

exponential parametrization of the wave function

$$\Psi = exp(T)\Phi_o$$

Coupled Cluster method

exponential parametrization of the wave function

$$|\Psi_{\mathbf{o}}
angle = \mathbf{e^T}|\Phi_{\mathbf{o}}
angle$$

$$T = T_1 + T_2 + T_3 ... + T_N$$

where T_n – n-tuple excitation operator

$$T_{n}~=~(n!)^{-2}\Sigma_{ab\dots}\Sigma_{ij\dots}t_{ij\dots}^{ab\dots}a^{\dagger}b^{\dagger}...ji$$

and $t^{\mathbf{ab}...}_{\mathbf{ij}...}a^{\dagger}b^{\dagger}...\mathbf{ji}$ - coefficients (amplitudes) to be determined

• amplitude equation:

$$\langle \Phi^{ab...}_{ii...}|e^{-T}He^T|\Phi_o\rangle = \langle \Phi^{ab...}_{ii...}|\bar{H}|\Phi_o\rangle = 0$$

• energy expression:

$$\mathbf{E} = \langle \mathbf{\Phi}_{\mathbf{o}} | \mathbf{e}^{-\mathbf{T}} \mathbf{H} \mathbf{e}^{\mathbf{T}} | \mathbf{\Phi}_{\mathbf{o}} \rangle = \langle \mathbf{\Phi}_{\mathbf{o}} | \mathbf{\bar{H}} | \mathbf{\Phi}_{\mathbf{o}} \rangle$$

where $\bar{\mathbf{H}}$ – similarity transformed Hamiltonian.

SR

```
CCD (Bartlett, Purvis, 1978; Pople et al. 1978)
CCSD (Purvis, Bartlett, 1982)
CCSDT (Noga, Bartlett, 1987; Watts, Bartlett, 1989)
CCSDTQ (Kucharski Bartlett, 1992)
CCSDTQP (Musiał, Kucharski, Bartlett, 2002)
```

```
S – SinglesD – DoublesT – TriplesQ – Quadruples
```

P – Pentuples

size-extensivity

Correct scaling of the energy with the size of the system ⇒ correct separation of the non-interacting fragments.

For the AB molecule composed of the non-interacting fragments A and B assuming that $\Phi_{AB} = \Phi_A \Phi_B$ we get:

$$\Psi_{AB} = exp(T_{AB})|\Phi_{AB}\rangle = exp(T_A)|\Phi_A\rangle exp(T_B)|\Phi_B\rangle = \Psi_A\Psi_B$$

$$\mathbf{E_{CC}^{AB}} = \mathbf{E_{CC}^{A}} + \mathbf{E_{CC}^{B}}$$

Important quantity in the CC theory:

 $ar{\mathbf{H}}$ - similarity transformed Hamiltonian

$$\mathbf{\bar{H}} = \mathbf{e^{-T}He^T} = (\mathbf{He^T})_\mathbf{c}$$

 $\bar{\mathbf{H}}$ operator includes one-body, two-body and also higher (three, four, ...) -body elements.

How do we obtain $\overline{\mathbf{H}}$ operator?

• Get **T** amplitudes from the CC amplitude equations:

$$\langle \Phi^{ab...}_{ij...} | e^{-T} H e^T | \Phi_o \rangle = 0$$

• With T amplitudes construct \bar{H} :

$$\mathbf{\bar{H}} = (\mathbf{H}\mathbf{e^T})_c$$

Equation-Of-Motion CC (EOM-CC) method

EOM-CC method

 \bullet CI-like calculations for the $\bar{\mathbf{H}}$ operator

Reminder:

Standard CI are based on the regular Hamiltonian (H).

Wave function:

$$|\Psi_k
angle \ = \ R(k)|\Psi_o
angle \ k=1,2,...$$

Schrödinger equation:

$$\begin{split} HR(\mathbf{k})|\Psi_o\rangle &= E_k R(\mathbf{k})|\Psi_o\rangle \\ R(\mathbf{k})H|\Psi_o\rangle &= E_o R(\mathbf{k})|\Psi_o\rangle \end{split}$$

Equation-of-motion:

$$[H,R(k)]|\Psi_o\rangle=\omega_kR(k)|\Psi_o\rangle$$

Since $|\Psi_o\rangle=e^T|\Phi_o\rangle$ we obtain - after simple algebra - eigenvalue equation:

$$(\bar{H}R(k))_c|\Phi_o\rangle = \omega_k R(k)|\Phi_o\rangle$$

or in matrix form:

$$\mathbf{\bar{H}R}(\mathbf{k}) = \boldsymbol{\omega}_{\mathbf{k}}\mathbf{R}(\mathbf{k})$$

$$\begin{split} \mathbf{R^{EE}}(\mathbf{k}) &= \mathbf{r_o}(\mathbf{k}) + \Sigma_a \Sigma_i \mathbf{r_i^a}(\mathbf{k}) a^\dagger i + \frac{1}{4} \Sigma_{ab} \Sigma_{ij} \mathbf{r_{ij}^{ab}}(\mathbf{k}) a^\dagger b^\dagger j i \\ &+ \frac{1}{36} \Sigma_{abc} \Sigma_{ijl} \mathbf{r_{ijl}^{abc}}(\mathbf{k}) a^\dagger b^\dagger c^\dagger l j i + ... \end{split}$$

$$\begin{split} \mathbf{R^{IP}}(\mathbf{k}) &= & \Sigma_i \mathbf{r_i}(\mathbf{k}) \mathbf{i} + \frac{1}{2} \Sigma_{\mathbf{a}} \Sigma_{\mathbf{i}\mathbf{j}} \mathbf{r_{ij}^a}(\mathbf{k}) \mathbf{a}^\dagger \mathbf{j} \mathbf{i} \\ &+ & \frac{1}{12} \Sigma_{\mathbf{a}\mathbf{b}} \Sigma_{\mathbf{i}\mathbf{j}\mathbf{l}} \mathbf{r_{ijl}^{ab}}(\mathbf{k}) \mathbf{a}^\dagger \mathbf{b}^\dagger \mathbf{l} \mathbf{j} \mathbf{i} + \dots \end{split}$$

$$\begin{split} R^{EA}(k) &= & \Sigma_a r^a(k) a^\dagger + \frac{1}{2} \Sigma_{ab} \Sigma_i r_i^{ab}(k) a^\dagger b^\dagger i \\ &+ & \frac{1}{12} \Sigma_{abc} \Sigma_{ij} r_{ij}^{abc}(k) a^\dagger b^\dagger c^\dagger j i + ... \end{split}$$

$$\mathbf{R^{DIP}}(\mathbf{k}) \ = \ \frac{1}{2} \sum_{ij} \mathbf{r}_{ij}(\mathbf{k}) \mathbf{j} \mathbf{i} + \frac{1}{6} \sum_{\mathbf{a}} \sum_{ijl} \mathbf{r}_{ijl}^{\mathbf{a}}(\mathbf{k}) \mathbf{a}^{\dagger} \mathbf{l} \mathbf{j} \mathbf{i} + \dots$$

$$\mathbf{R^{DEA}(k)} \ = \ \frac{1}{2} \sum_{\mathbf{a}\mathbf{b}} \mathbf{r^{ab}(k)} \mathbf{a^{\dagger}b^{\dagger}} + \frac{1}{6} \sum_{\mathbf{a}\mathbf{b}\mathbf{c}} \sum_{\mathbf{i}} \mathbf{r^{abc}_{\mathbf{i}}(k)} \mathbf{a^{\dagger}b^{\dagger}c^{\dagger}i} + \dots$$

EOM-CCSD model

$$\mathbf{\bar{H}} = \left[\begin{array}{cc} \langle \mathbf{S} | \mathbf{\bar{H}} | \mathbf{S} \rangle & \langle \mathbf{S} | \mathbf{\bar{H}} | \mathbf{D} \rangle \\ \langle \mathbf{D} | \mathbf{\bar{H}} | \mathbf{S} \rangle & \langle \mathbf{D} | \mathbf{\bar{H}} | \mathbf{D} \rangle \end{array} \right]$$

```
\begin{array}{ll} \mathsf{S} \equiv \Phi_{\mathbf{j}} & \mathsf{D} \equiv \Phi_{\mathbf{i}\mathbf{j}}^{\mathbf{a}} & \mathsf{Ionization\ potential\ (IP)} \\ \mathsf{S} \equiv \Phi^{\mathbf{b}} & \mathsf{D} \equiv \Phi_{\mathbf{i}}^{\mathbf{a}\mathbf{b}} & \mathsf{Electron\ affinity\ (EA)} \\ \mathsf{S} \equiv \Phi_{\mathbf{i}}^{\mathbf{a}} & \mathsf{D} \equiv \Phi_{\mathbf{i}\mathbf{j}}^{\mathbf{a}\mathbf{b}} & \mathsf{Excitation\ energy\ (EE)} \end{array}
```

EOM-CCSDT model

$$\bar{\mathbf{H}} = \left[\begin{array}{ccc} \langle \mathbf{S} | \bar{\mathbf{H}} | \mathbf{S} \rangle & \langle \mathbf{S} | \bar{\mathbf{H}} | \mathbf{D} \rangle & \langle \mathbf{S} | \bar{\mathbf{H}} | \mathbf{T} \rangle \\ \langle \mathbf{D} | \bar{\mathbf{H}} | \mathbf{S} \rangle & \langle \mathbf{D} | \bar{\mathbf{H}} | \mathbf{D} \rangle & \langle \mathbf{D} | \bar{\mathbf{H}} | \mathbf{T} \rangle \\ \langle \mathbf{T} | \bar{\mathbf{H}} | \mathbf{S} \rangle & \langle \mathbf{T} | \bar{\mathbf{H}} | \mathbf{D} \rangle & \langle \mathbf{T} | \bar{\mathbf{H}} | \mathbf{T} \rangle \end{array} \right]$$

EOM-CCSD for DIP and DEA

$$ar{\mathbf{H}} = \left[\ \langle \mathbf{D} | \mathbf{\bar{H}} | \mathbf{D} \rangle \ \right]$$

 $\mathsf{D} \equiv \Phi_{\mathbf{i}\mathbf{j}}$ Double ionization potential (DIP) $\mathsf{D} \equiv \Phi^{\mathbf{a}\mathbf{b}}$ Double electron affinity (DEA)

EOM-CCSDT for DIP and DEA

$$\mathbf{\bar{H}} = \left[\begin{array}{cc} \langle \mathbf{D} | \mathbf{\bar{H}} | \mathbf{D} \rangle & \langle \mathbf{D} | \mathbf{\bar{H}} | \mathbf{T} \rangle \\ \langle \mathbf{T} | \mathbf{\bar{H}} | \mathbf{D} \rangle & \langle \mathbf{T} | \mathbf{\bar{H}} | \mathbf{T} \rangle \end{array} \right]$$

 $\begin{array}{l} \text{DIP: } \mathsf{T} \equiv \Phi^{\mathrm{a}}_{\mathbf{i}\mathbf{j}\mathbf{k}} \\ \text{DEA: } \mathsf{T} \equiv \Phi^{\mathrm{abc}}_{\mathbf{i}} \end{array}$

Efficient technique used to diagonalize large matrices:

<u>Davidson method</u> generalized for non-Hermitian matrices

A crucial step in the Davidson procedure is taking product of the amplitude vector \mathbf{R} and the matrix - to be diagonalized - $\mathbf{\bar{H}}$

$$x_{\mathbf{k}} = \bar{H}R_{\mathbf{k}}$$

The product \overline{HR}_k cannot be taken directly as a matrix product.

Why?

Rank of $\overline{\mathbf{H}}$ goes into milions.

We know $\underline{\bar{\mathbf{H}}}$ operator but we do not construct $\underline{\bar{\mathbf{H}}}$ matrix.

Thus our equations can be seen as:

EE-EOM-CCSDT equations

$$\begin{split} \mathbf{R}(\mathbf{k}) &= \mathbf{R_o}(\mathbf{k}) + \mathbf{R_1}(\mathbf{k}) + \mathbf{R_2}(\mathbf{k}) + \mathbf{R_3}(\mathbf{k}) \\ x_i^a(k) &= \langle \mathbf{\Phi_i^a} | (\bar{\mathbf{H}_N} \mathbf{R}(\mathbf{k}))_\mathbf{c} | \mathbf{\Phi_o} \rangle \\ x_{ij}^{ab}(k) &= \langle \mathbf{\Phi_{ij}^{ab}} | (\bar{\mathbf{H}_N} \mathbf{R}(\mathbf{k}))_\mathbf{c} | \mathbf{\Phi_o} \rangle \\ x_{ijl}^{abc}(k) &= \langle \mathbf{\Phi_{ijl}^{abc}} | (\bar{\mathbf{H}_N} \mathbf{R}(\mathbf{k}))_\mathbf{c} | \mathbf{\Phi_o} \rangle \\ x_i^a, x_{ij}^{ab}, x_{ijl}^{abc} - \text{elements of the } \mathbf{x_k} \text{ vector} \end{split}$$

Monika Musiał

The diagrammatic representation of the elements of \bar{H}_N used in derivation of the EE-EOM-CCSDT equations.

$$\begin{array}{c} \text{one-body } I^1:\ I^1_1+I^1_2\\ \\ \text{at } \\ I^0_b \\ I^1_b \\ I^1_$$

	$S \vee$	D	T
S¥	$I_1^1 \\ I_2^{2'}$	$I_2^1 \\ I_3^2$	I_4^2
DV	$I_1^2 \\ I_2^{3'}$	I_1^1 I_2^2 I_3^3	$I_2^1 \\ I_3^2$
T	$I_1^3 \\ I_2^{4'} \\ I_3^4$	I_1^2 I_2^3 I_3^3	$I_1^1 \\ I_2^2$

Diagrammatic form of the standard EE-EOM-CCSDT equations.

$ar{\mathbf{H}}$ operator

- $oldsymbol{ar{H}}$ is non-Hermitian
- It includes three-, four- and higher-body elements

$$\mathbf{\bar{H}} = \mathbf{e^{-T}He^T} = (\mathbf{He^T})_c$$

Expanding $\bar{\mathbf{H}}_{\mathbf{N}}$ into one-body, two-body, three-body, ... etc. contributions we get:

$$\bar{H}_N = I^o + \sum_{k=0}^2 I_k^1 + \sum_{k=0}^4 I_k^2 + \sum_{k=0}^3 I_k^3 + \sum_{k=0}^3 I_k^4 + \cdots$$

EOM-CC

Computational strategy

Steps applied in the standard EOM-CC method:

- solve the standard CCSD (or CCSDT) equations for the ground state problem
- using the converged T_1 , T_2 (or T_3) amplitudes construct all \bar{H} elements
- ullet apply a generalized Davidson diagonalization procedure to obtain eigenvalues of the $ar{\mathbf{H}}$ matrix.