I. Programmer’s Manual

II. Programmer’s Manual

A. Structure and Philosophy of Basic Modules
B. Files Used by the Programs

ACES II makes use of a small number of unformatted files which contain various pieces of
information relating to the calculation. For the most part, these files are direct access files
which have an implicit logical record structure. This means that the programs which read
from and/or write to these files treat the information in chunks (logical records) which do not
correspond directly to the physical structure of the file on the disk drive. Translation between
the logical and physical structure of the files is handled by specialized I/O routines (GETLST,
PUTLST, GETREC and PUTREC). The following section lists all of the permanent files
used by ACES II.

JOBARC : This file contains a considerable amount of information about the calculation,
such as basis function and symmetry information, SCF eigenvectors, density matrices etc. All
records resident on this file are associated with a character string which is used to reference
them (see the description of the PUTREC and GETREC subroutines in the library routines
handbook). Thus far, the programmers of ACEs 11 have followed a philosophy which limits
the size of records written to JOBARC to be of relatively small size (no larger than the
square of the number of basis functions), with the result that this file is rarely larger than
a few megabytes in size. JOBARC is a direct access file with an imposed logical record
structure, with information regarding the translation held in the JOBARC common block
and stored in the JASMRY file. Entries are read by the GETREC subroutine and written
by the PUTREC subroutine. Subroutine JASMRY dumps a list of the contents of the file.

JASMRY : See JOBARC, above. This file contains a single record which is read and
written by the DUMPJA subroutine.

OPTARC : This file contains information about the progress of optimizations and is a
historical carry-over from the old days. Eventually, this file will probably be phased out
with its information being moved over to JOBARC. This file has a sequential structure with
relatively large records, and the number of records always equals the number of optimization
cycles plus one. OPTARC records are written by subroutine ARCHIVE in joda.f and are
read by subroutine RETRIEVE in the same program.

JODADONE : This file contains a single empty sequential record and is written by
XJODA when an optimization has terminated. Its presence is used by XACES2 to test for
the convergence of an optimization. It is written by subroutine EFOL of joda.f.

FCMINT : This file contains the full square internal coordinate force constant matrix
and can be used to initialize the Hessian in geometry optimizations.

MOINTS, GAMLAM, MOINTS, SECDER, DERINT : These five files are actually treated
as a single file by the program system, and contain the integral and amplitude lists used by
the post-SCF program modules. As such, these files can become quite large and will always
take up most of the disk space in actual calculations. The only difference between these files
is the lists which are stored on them. MOINTS contains list numbers 1-100; GAMLAM

contains lists 101-200; MOABCD contains lists 201-300; SECDER. contains lists 301-400;
and DERINT contains lists 401-500. These files are composed of direct access records with
an imposed logical record structure, and all I/O is supervised by the GETLST and PUTLST
subroutines and their dependent routines FETCH and DUMP.

C. Job archive (JOBARC) file contents

This JOBARC file serves as a repository of many diverse data about the calculation
being run. Records are read and written by nearly every module in ACES 11. This section is
intended as a catalog of the records which may be found on the JOBARC file, depending on
the job type, etc. With each record is given a brief description, the size of the record, and
which module first write it. Cross references are often given to related records.

Terms of reference

The “computational basis” or “computational order” is the order of centers and basis func-
tions used by the integral package, and thus the rest of the calculation.

The “ZMAT basis” or “ZMAT order” refers to centers arranged in the order of the user’s
ZMAT file. Basis functions are rearranged to correspond to the ZMAT center ordering and
may be further rearranged within a center to facilitate symmetry checking operations.

For transformation matrices, we try to indicate which bases label the rows and columns of
the matrix in order to avoid confusion in their application. For non-unitary transformations,
we also specify which side the transformation acts on.
SOs are symmetry-adapted orbitals, the basis in which the bulk of ACES 11 operates. AOs
are atomic orbitals which are used mainly for symmetry analysis within the codes.
The sizes of records are described symbolically using the following definitions:

NAO Number of atomic orbitals

NMO Number of molecular orbitals

NAtoms Number of centers specified in the ZMAT

NIrreps Number of irreps in computational point group

NOrbits Number of “orbits” (symmetry-unique centers)

NSO Numer of symmetry-adapted orbitals

The actual variables employed in the code may be different.

C..1 ANGMOMBF

[-quantum number of each AO basis function in the computational basis. s=0, p=1,
See also ANMOMBFO.

Data type: integer. Dimension: NAO. Written by: xvmol2ja.

C..2 ANMOMBFO0

[-quantum number of each AO basis function in the ZMAT order. s=0, p=1, See also
ANGMOMBEF.

Data type: integer. Dimension: NAO. Written by: xvmol2ja.

C..3 AO0280

The transformation matrix connecting the symmetry-adapted orbitals (columns of AO2S0)
with the atomic orbitals (rows of AO2SO). This matrix multiplied on the left of an SO
basis object will transform it to the AO basis (note that the record is misnamed in this
respect). This matrix is in general not unitary and frequently not even square. The inverse
transformation is given in the AO2SOINV record.

Data type: floating point. Dimension: NAO xNSO. Written by: xvmol2ja.

C..4 AO2SOINV

The transformation matrix connecting the atomic orbitals (columns of AO2SOINV) with the
symmetry-adapted orbitals (rows of AO2SOINV). This matrix multiplied on the left of an
AQ basis object will transform it to the SO basis. This matrix is in general not unitary and
frequently not even square. The inverse transformation is given in the AO2SOINV record.

Data type: floating point. Dimension: NSOxNAQ. Written by: xvmol2ja.

C..5 ATOMCHRG

Atomic number of all atoms specified in Z-matrix. Dummy atoms have a value of zero.
Data type: floating point. Dimension: NATOMS. Written by: xjoda.

C..6 ATOMMASS

Atomic masses of all atoms specified in Z-matrix. Dummy atoms have zero mass.
Data type: floating point. Dimension: NATOMS. Written by: xjoda.

C..7 BRUKTEST

A flag which tells the xaces ii drive program if a Brueckner orbital-based calculation has
converged to the tolerance specified by the BRUCK_CONYV keyword. A value of 1 indicates
convergence, a value of 0 forces another iteration.

Data type: integer. Dimension: 1. Written by: xvcc.

C..8 CENTERBF

Atomic center to which each AO basis function belongs. Both centers and basis functions
are in the computational order. See also CNTERBFO.

Data type: integer. Dimension: NAO. Written by: xvmol2ja.

C..9 CMP2ZMAT

The transformation matrix connecting the computational ordered SO basis (columns of
CMP2ZMAT) to the ZMAT ordered AO basis (rows of CMP2ZMAT). This matrix oper-
ates on the left. This matrix is in general not unitary and frequently not even square. The
inverse transformation is given in the ZMAT2CMP record.

Data type: floating point. Dimension: NAOXxNSQO. Written by: xvmol2ja.

C..10 CNTERBFO

Atomic center to which each AO basis function belongs. Both centers and basis functions
are in the ZMAT order. See also CENTERBF.

Data type: integer. Dimension: NAO. Written by: xvmol2ja.

C..11 COORD

Cartesian coordinates for all atoms in Z-matrix, according to the computational orientation.
Data type: floating point. Dimension: NATOMS*3. Written by: xjoda

C..12 FULLAOSO

The transformation matrix connecting the atomic orbitals (columns of FULLAOSO) with
the symmetry-adapted orbitals (rows of FULLAOSO). This matrix multiplied on the left
of an AO basis object will transform it to the SO basis. This matrix is in general not
unitary. This matrix differs from AO2SOINV in that it is always a full square — it includes
in the SO basis, functions such as spherical harmonic contaminants, which are deleted in the
computational basis. The inverse transformation is given in the FULLSOAQO record.

Data type: floating point. Dimension: NAOXxNAQO. Written by: xvmol2ja.

C..13 FULLSOAO

The transformation matrix connecting the symmetry-adapted orbitals (columns of FULL-
SOAQ) with the atomic orbitals (rows of FULLSOAO). This matrix multiplied on the left of
an SO basis object will transform it to the AO basis. This matrix is in general not unitary.
This matrix differs from AO2S0 in that it is always a full square — it includes in the SO basis,
functions such as spherical harmonic contaminants, which are deleted in the computational
basis. The inverse transformation is given in the FULLAOSO record.

Data type: floating point. Dimension: NAOXxNAQO. Written by: xvmol2ja.

4

C..14 GRADIENT

This record contains the Cartesian gradient. The entries are ordered 0F /0z, O0F /0y, OF 0z,
atom-by-atom. The atoms follow the computational order.

Data type: integer. Dimension: 3*NATOMS. Written by: xvdint.

C..15 HESSIANM

This record contains the Hessian matrix. The ordering is Fiz14, Fiziy, Fiziz, Fiaoe - - Froizs Frziy -

Atoms follow the computational order. The record is written by xvdint and xcphf.
Data type: integer. Dimension: 9*NATOMS*NATOMS. Written by: see above.

C..16 IFLAGS
The job control parameters which can be specified by the ZMAT file. This record is initially
written by xjoda, but may be modified by subsequent programs in the execution sequence.

Data type: integer. Dimension: 100. Written by: see above.

C..17 LINEAR

A value of 1 indicates that the molecule is linear, 0 otherwise.

Data type: integer. Dimension: 1. Written by: xjoda.

C..18 MAP2ZMAT

Maps atomic centers from the computational ordering to the ZMAT ordering. If 7 is a
computational center, MAP2ZMAT(7) is the number of the same center in the ZMAT file.
Data type: integer. Dimension: NAtoms. Written by: xvmol2ja.

C..19 MODROPA

The alpha molecular spin-orbitals which will be dropped prior to the electron correlation
calculation. The orbitals are indexed by eigenvalue, with the smallest eigenvalue (most
strongly bound) being 1 and the largest eigenvalue equal to the number of basis functions.

Data type: integer. Dimension: NUMDROPA (see below). Written by: xjoda.

C..20 MODROPB

The beta molecular spin-orbitals which will be dropped prior to the electron correlation
calculation. While this record is present on JOBARC, it is never read, as the program
system does not allow different values of MODROPA and MODROPB.

Data type: integer. Dimension: NUMDROPB. Written by: xjoda.

C..21 NAOBASFN

Number of atomic orbitals in the basis. Because the SO basis may have functions deleted

from it (i.e. spherical harmonic contaminants), the AO basis may be larger than the SO
basis. See also NBASTOT.

Data type: integer. Dimension: 1. Written by: xvmol2ja.

C..22 NAOBFORB

Number of atomic orbitals in each “orbit” (symmetry-unique center). This is the AO basis
analog of NBASATOM.

Data type: integer. Dimension: NOrbits. Written by: xvmol2ja.

C..23 NBASATOM

Number of symmetry-adapted orbitals in each “orbit” (symmetry-unique center). This is
the SO basis analog of NAOBFORB.

Data type: integer. Dimension: NOrbits. Written by: xvmol2ja.

C..24 NATOMS

The number of atoms in the Z-matrix (includes dummy atoms).

Data type: integer. Dimension: 1. Written by: xjoda.

C..25 NREALATM

The number of non-dummy centers in the Z-matrix.

Data type: integer. Dimension: 1. Written by: xjoda.

C..26 NUCREP

The nuclear repulsion energy in atomic units.

Data type: floating point. Dimension: 1. Written by: xjoda.

C..27 NBASTOT

Number of symmetry-adapted orbitals in the basis. Because the SO basis may have functions
deleted from it (i.e. spherical harmonic contaminants), the AO basis may be larger than the
SO basis. See also NAOBASFEN.

Data type: integer. Dimension: 1. Written by: xvmol2ja.

C..28 NMPROTON

The number of protons in the molecule.
Data type: integer. Dimension: 1. Written by: xjoda.

C..29 NOCCORB

The number of occupied molecular orbitals used in the post-SCF calculation according to
spin.

Data type: integer. Dimension: 2. Written by: xintprc.

C..30 NUCREP

Nuclear repulsion energy in Hartrees (atomic units).
Data type: floating point. Dimension: 1. Written by: xvmol2ja.

C..31 NUMBASIR

Number of SOs in each irrep.
Data type: integer. Dimension: Nlrreps. Written by: xvmol2ja.

C..32 NUMDROPA

Number of alpha molecular spin-orbitals which will be dropped prior to the electron corre-
lation calculation.

Data type: integer. Dimension: 1. Written by: xjoda.

C..33 NUMDROPB

Number of beta molecular spin-orbitals which will be dropped prior to the electron correlation
calculation. While this record is present on JOBARC, it is never read, as the program system
does not allow different values of NUMDROPA and NUMDROPB.

Data type: integer. Dimension: 1. Written by: xjoda.

C..34 NVRTORB

The number of virtual molecular orbitals used in the post-SCF calculation according to spin.

Data type: integer. Dimension: 2. Written by: xintprc.

C..35 OCCUPYA

Orbital occupancy vector for alpha spin-orbitals. Originally written by xjoda as specified by
ZMAT input.

Data type: integer. Dimension: Nlrreps. Written by: xjoda.

7

C..36 OCCUPYB

Orbital occupancy vector for beta spin-orbitals. Originally written by xjoda as specified by
ZMAT input.

Data type: integer. Dimension: Nlrreps. Written by: xjoda.

C..37 ORIENTMT

Matrix which relates computational and canonical orientations.
Data type: floating point. Dimension: 9. Written by: xjoda.

C..38 QRHFIRR

The symmetries of the orbitals which are involved in the QRHF orbital occupation alteration.
A minus sign indicates that a orbital of the associated symmetry will be depopulated, while
a positive sign indicates that an « orbital will be populated.

Data type: floating point. Dimension: QRHFTOT. Written by: xjoda.

C..39 QRHFLOC

The offset for orbitals which are involved in the QRHF orbital occupation alteration. For
depopulation calculations, a value of 1 indicates the occupied orbital with the largest eigen-
value in the symmetry block; larger values give offsets with respect to the Fermi level. For
electron addition, 1 refers to the lowest unoccupied orbital within the symmetry block, and
larger values give offsets as above.

Data type: floating point. Dimension: QRHFTOT. Written by: xjoda.

C..40 QRHFTOT

The number of orbitals which will undergo a change in occupation number in the QRHF
procedure.

Data type: floating point. Dimension: 1. Written by: xjoda.

C..41 S2SCF

The value of (S?) for the reference wavefunction.
Data type: floating point. Dimension: 1. Written by: xvscf.

C..42 SCFENEG

The SCF energy.
Data type: floating point. Dimension: 1. Written by: xvscf.

C.43 SCFEVALA

The diagonal elements of the o Fock matrix, expressed in the molecular orbital basis. Ordered
according to the post-SCF orbital numbering scheme.

Data type: floating point. Dimension: NMO. Written by: xftran*.

C.44 SCFEVALB

The diagonal elements of the # Fock matrix, expressed in the molecular orbital basis. Ordered
according to the post-SCF orbital numbering scheme.

Data type: floating point. Dimension: NMO. Written by: xftran*.

C..45 SCFEVCAO0

The o molecular orbitals, ordered according to the SCF orbital numbering scheme.
Data type: floating point. Dimension: NAO*NAQO. Written by: xvscf.

C..46 SCFEVCBO

The molecular orbitals, ordered according to the SCF orbital numbering scheme.
Data type: floating point. Dimension: NAO*NAQO. Written by: xvscf.

C..47 SCFEVECA

The « molecular orbitals, ordered according to the post-SCF orbital numbering scheme, as
used in post-SCF calculations.

Data type: floating point. Dimension: NMO*NAQO. Written by: xftran*.

C..48 SCFEVECB

The # molecular orbitals, ordered according to the post-SCF orbital numbering scheme, as
used in post-SCF calculations.

Data type: floating point. Dimension: NMO*NAQ. Written by: xftran*.

C.49 SCFKICK

A flag which tells the xaces ii driver program if an SCF orbital instability has been found
which can be followed within the current symmetry and spin restrictions. A value of 1 forces
reexecution of the SCF code with a rotated eigenvector, a value of 0 terminates the job.
Used only in jobs which invoke HFSTABILITY=FOLLOW.

Data type: integer. Dimension: 1. Written by: xintprc.

C..50 TOTENERG

The total energy. This record is written by many programs, beginning with xvscf and keeps
a running tab on the total energy.

Data type: floating point. Dimension: 1. Written by: see above.

C..51 UHFRHF

This flag gives the type of SCF calculation which will be performed. 0 indicates RHF, 1 indi-
cates UHF and 2 indicates ROHF. UHFRHF is originally written by xjoda, but subsequent
programs may modify it.

Data type: floating point. Dimension: 1. Written by: see above.

C..52 ZMAT2CMP

The transformation matrix connecting the ZMAT ordered AO basis (columns of ZMAT2CMP)
to the computationally ordered SO basis (rows of ZMAT2CMP). This matrix operates on
the left. This matrix is in general not unitary and frequently not even square. The inverse
transformation is given in the CMP2ZMAT record.

Data type: floating point. Dimension: NSOxNAQ. Written by: xvmol2ja.

D. Integral Lists

The following section describes the contents of the MOINTS, GAMLAM, MOABCD,
SECDER and DERINT files, which are used to store two-electron integrals and various
other quantities.

PART I. Lists used in standard calculation types (single point energy,
first and second derivative calculations)

J I Quantity Storage Mode

ALL ; FOR

EACH
1-NIRREP 5 <AB|IJ> A,T ; B,J (NOT ANTISYMMETRIZED)
1-NIRREP 6 <ablij> a,i ; b,j (NOT ANTISYMMETRIZED)
1-NIRREP 11 <IJ||KL> I<J ; K<L * Kk
1-NIRREP 12 <ijl k1> i<j ; k<1 oKk

1-NIRREP 13 <IjlIK1> 1,j ; K,1

10

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP

© 00 N

10

14
15
16
17
18
19
20
21
22

23
24
25
26

27
28
29
30

34
35
36
37
38
39

40
41
42
43

44
45
46

48

<IJI|KA>
<ijllka>
<IjlAk>
<IjlKa>

<AB||1J>
<abl|ij>
<Ab|Ij>
<Ab|Ij>
<Ab|Ij>
<AB| 1J>
<abl[ij>
<Ab|Ij>
<Ab|Ij>

<IA|[JB>
<ial|jb>
<iA|jB>
<all|bJ>

<AB| |CI>
<abl [ci>
<Ab|Ic>
<Ab|Ci>

T2(1IJ,AB)
T2(ij,ab)
T2(Ij,Ab)
T2(Ij,Ab)
T2(Ij,Ab)
T2(1j,Ab)

T2(IJ,AB)
T2(ij,ab)
T2(Ij,Ab)
T2(Ij,Ab)

T2(1J,AB)
T2(ij,ab)
T2(Ij,Ab)

D(I1J,AB)

(increment)A,J
(increment)a, j
(increment)A,I
(increment)A, j

11

A<B ;
a<b ;
A,b ;

A<B ;

I<J

(rings)
(rings)
(rings)
(rings)

Xk Xk
Xk Xk

XXXk

XXk Xk

XXk X

XXk X

* %k %

%k %k

* k%
XXk Xk

* k%
Xk Xk

Xk Xk

XXk Xk

XXk Xk

Xk Xk

1-NIRREP 49 D(ij,ab) a<b ; i<j oKk

1-NIRREP 50 D(Ij,Ab) Ab ; I,]

1-NIRREP 51 W(MN,IJ) intermed. M<N ; I<J KKk

1-NIRREP 52 W(mn,ij) intermed. m<n ; i<j * kK

1-NIRREP 53 W(Mn,Ij) intermed. M,n ; I,j

1-NIRREP 54 W(MB,EJ) intermed. E,M ; B,J

1-NIRREP 55 W(mb,ej) intermed. e,m ; b,j KoKk

1-NIRREP 56 W(Mb,Ej) intermed. E,M ; b,]

1-NIRREP 57 W(mB,eJ) intermed. e,m ; B,J KoKk

1-NIRREP 58 W(mB,Ej) intermed. E,m ; B,j

1-NIRREP 59 W(Mb,eJ) intermed. e,M ; b,J KKk

1-NIRREP 61 T2(IJ,AB) increment A<B ; I<J KKk
L2(IJ,AB) increment A<B ; I<J in Lambda iterations **x*
T2(1J,AB) [3] A<B ; I<J iterative ROHF

1-NIRREP 62 T2(ij,ab) increment a<b ; i<j %k k
L2(ij,ab) increment a<b ; i<j in Lambda iterations **x
T2(ij,ab) [3] a<b ; i<j iterative ROHF

1-NIRREP 63 T2(Ij,Ab) increment A,b ; I,j
L2(Ij,Ab) increment A,b ; I,j in Lambda iterations
T2(Ij,Ab) [3] A,b ; I,j iterative ROHF

1-NIRREP 64 Reciprocal D(IJ,AB) A<B ; I<J

9 64 Reciprocal D(I,A) AT

1-NIRREP 65 Reciprocal D(ij,ab) a<b ; i<j Kok K

9 65 Reciprocal D(i,a) a,i Kok K

1-NIRREP 66 Reciprocal D(Ij,Ab) A,b ; I,j

1-3 70-89 Reserved for RLE Jacobi iterates

1 90 T1AA A,I

2 90 T1BB a,i *okk

3 90 T1AA AND L1AA INCREM AT

4 90 T1BB AND L1BB INCREM a,i %k k

5 90 AB MO OVERLAP MATRIX I,j (o0-0) kK

6 90 AB MO OVERLAP MATRIX A,j (v-o0) kK

7 90 AB MO OVERLAP MATRIX I,b (o-v) * %k

8 90 AB MO OVERLAP MATRIX Ab (v-v) *kk

9 90 T1AA[2]; iterative AT ROHF

10 90 T1BB[2]; iterative a,i ROHF

12

B W N - W N -

D W N -

1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP

resorted in VDENS

1-NIRREP

resorted in VDENS

1-NIRREP

91
91
91
91

92
92
92
92

93
93
93
93

94

95

96

98

107
108
109
110
111
112
113
114
115
116
117
118

123

F(MI) intermed.
F(mi) intermed.
f(M,I) (fock matrix)
f(m,i) (fock matrix)

F(EA) intermed.
F(ea) intermed.
f(E,A) (fock matrix)
f(e,a) (fock matrix)

F(AI) intermed.
F(ai) intermed.
f(A,I) (fock matrix)
f(a,i) (fock matrix)

T2(1J,AB) [2] iterative
T2(ij,ab) [2] iterative
T2(Ij,Ab) [2] iterative

T2(Ij,Ab) cumulative

G(IJ,KA)
W(IJ,KA)
G(ij,ka)
W(ij,ka)
G(Ij,Ak)
W(Ij,AKk)
G(Ij,Ka)
W(Ij,Ka)

G(IJ,KL)
G(ij,k1)
G(Ij,K1)
G(IJ,AB)
G(ij,ab)
G(Ij,Ab)
G(iA,bJ)
to

G(Ia,Bj)
to

G(IA,JB)

resorted in VDENS to

13

M,I
m,i
M,I
m,i

(only
(only

(only
(only

(only
(only

K,A
K,A
k,a
k,a
A,k
A,k
K,a
K,a

1<J
i<j
I,j

I,j

in
in
in

in

non-HF
non-HF

non-HF
non-HF

non-HF
non-HF

methods)
methods)

methods)
methods)

methods)
methods)

(MBPT S~2)

VLAMCC

VLAMCC

VLAMCC

VLAMCC

Xk Xk

Xk Xk

Xk Xk

Xk Xk

Xk Xk

Xk Xk

ROHF
ROHF
ROHF

ROHF

* kK
Xk Xk
Xk Xk
* k%
* k%
* k%

XKk

XKk

Xk Xk

* Kk
* Kk

1-NIRREP

resorted in VDENS

1-NIRREP

resorted in VDENS

1-NIRREP

resorted in VDENS

1-NIRREP

1-NIRREP

1-NIRREP

1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

1-NIRREP
1-NIRREP
1-NIRREP

124

125

126

127

128

129

130

131
132
133

134
135
136
137
138
139

144
145
146

G(ia,jb)
to
G(iA,jB)
to
G(Ia,Jb)
to

G(AB,CI)
W(AB,CI)
G(ab,ci)
W(ab,ci)
G(Ab,Ic)
W(ADb,Ic)
G(Ab,Ci)
W(Ab,Ci)

G(AB,CD)
G(ab,cd)
G(Ab,Cd)

L2(IJ,AB)
L2(ij,ab)
L2(Ij,Ab)
L2(Ij,Ab)
L2(Ij,Ab)
L2(Ij,Ab)

L2(1J,AB)
L2(ij,ab)
L2(Ij,Ab)

aQaQHHO O QQ

-

- -

-

PP R

H o R He

-

HeoH O O H H

-

-

; I<J
;i<
. I,j

Derivatives of one-electron integrals in AO basis:

1-NIRREP
1-NIRREP
1-NIRREP
1-3

1-NIRREP
1-NIRREP

150
151
152
153
154
155

S(mu,nu) “chi

dipole (mu,nu)
A~ (chi)*DREL
A~ (chi)*DREL

14

ipert ; mu >= nu
f(mu,nu”(chi) (alpha)ipert ; mu >= nu
f(mu,nu"(chi) (beta) ipert ; mu >= nu
ixyz ; mu >= nu

(alpha)ipert ; mu >= nu
(beta) ipert ; mu >= nu

in VLAMCC

in VLAMCC

in VLAMCC

in VLAMCC

* %k %
Xk Xk

Xk Xk

Xk %

XXk Xk

XXk Xk

* %k Xk

* %k Xk

XXk X
XXk X

* %k %
%k %k

* k%
XXk Xk

* %k %

Xk Xk

* %k Xk

XXk X

Relaxed density matrix (correlation correction only):

1

160

160

160

160

160

160

D(I,J)
D(1,j)
D(A,B)
D(a,b)
D(A,I)

D(a,i)

occ.-occ. block of relaxed
density matrix (alpha)

occ.-occ. block of relaxed
density matrix (beta) okok
virt.-virt. block of relaxed
density matrix (alpha)
virt.-virt. block of relaxed
density matrix (beta) ok ok
occ.-virt. block of relaxed
density matrix (alpha)

occ.-virt. block of relaxed
density matrix (beta) * k%

Intermediate matrix I(p,q) (correlation correction only):

1

161

161

161

161

161

161

I(1I,3)
I(i,j)
I(A,B)
I(a,b)
I(A,T)

I(a,i)

occ.-occ. block of intermediate
matrix (alpha)

occ.-occ. block of intermediate
matrix (beta) ok ok
virt.-virt. block of intermediate
matrix (alpha)

virt.-virt. block of intermediate
matrix (beta) KKk
virt.-occ. block of intermediate
matrix (alpha)

virt.-occ. block of intermediate
matrix (beta) KKK

Gamme-intermediates created in the triple code for CCSD(T),

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

162
163
164
165
166
167
168
169

G trip(IJ,KA)
G trip(ij,ka)
G trip(Ij,Ak)
G trip(Ij,Ka)
G"trip(AB,CI)
G trip(ab,ci)
G trip(Ab,Ic)
G~trip(Ab,Ci)

I<J ; K,A *ok K
i<j ; k,a *ok K
I,j ; Ak Kok ok
I,j 5 K,

A<B ; C,I * %k k
a<b ; c,i %%k
Ab ; I,c ok k
A,b ; C,i

Derivatives of Overlap and Fock matrices and CPHF coefficients in MO basis:

15

1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP
1-NIRREP

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

1 190
2 190

1 191
2 191

1 192
2 192

1-NIRREP 231

1-NIRREP 232

1-NIRREP 233

S(I,J) chi
S(i,j)"chi
S(A,B) “chi
S(a,b) “chi
S(A,I) chi
S(a,i) chi
F(I,J) chi
F(i,j) chi
F(A,B) “chi
F(a,b) “chi
F(A,I) chi
F(a,i)“chi
U(A,I) chi
U(a,i) chi

additional lists used in CPHF (RHF and UHF)
additional lists used in CPHF (UHF only)

A~ (chi)*D (I,J)
A~(chi)*D (i,j)
A~ (chi)*D (A,I)
A~ (chi)*D (a,i)

L1AA
L1BB

G(MI) intermed.
G(mi) intermed.

G(A,E) intermed.
G(a,e) intermed.

<AB| |CD>
W(AB,CD)
<ab]| [cd>
W(ab,cd)
<Ab|Cd>
<Ab|Cd>
W(Ab,Cd)

A<B
A<B
a<b
a<b

; C<D

; C<D DURING VLAMCC

; c<d

; ¢<d DURING VLAMCC

A,b ; C,d

C,d single point RHF
C,d DURING VLAMCC

Xk Xk

Xk Xk

XXXk

* %k Xk

X%k Xk

* %k %

%k %k

%k %k

* %k Xk

XXk K

* %k %

Xk Xk

Xk %

XXk Xk
XXk Xk
* %k Xk
* %k Xk

Some additional lists are used in MBPT(2) second derivative calculations.

These are:

1-NIRREP 314

d<IJ| |AB>/dx

16

A<B ;

2

I<J,IPERT

%k %k

1-NIRREP 315 d<ijllab>/dx a<b ; i<j,IPERT kK
1-NIRREP 316 d<Ij||Ab>/dx A,b ; I,j,IPERT

In analytic gradient calculations, the direct access files are reinitialized
and restructured by the modules XANTI and XBCKTRN, which process and transform
the two-particle reduced density matrix. These programs use the MOINTS and
GAMLAM files in the following way

a) Lists used by ANTI

left right quantity symmetry storage

index index type
1 1-NSYM G(PQ,rs) AAAA P<Q ; r<s
2 1-NSYM G(PQ,rs) AABB P<Q ; r<s
3 1-NSYM G(PQ,rs) ABAB P,Q ; r,s
4 1-NSYM G(PQ,rs) ABCD P,Q ; r,s
1 51-50+NSYM G(pq,RS) AAAA p<q ; R<S * Kk
2 51-50+NSYM G(pq,RS) AABB p<q ; R<S Kok
3 51-50+NSYM G(pq,RS) ABAB p.q ; R,S ok ok
4 51-50+NSYM G(pg,RS) ABCD p.q ; R,S * KK
6 1-NSYM G(PQ,RS) AAAA P<Q ; R<S *okk
7 1-NSYM G(PQ,RS) AABB P<Q ; R<S *okk
8 1-NSYM G(PQ,RS) ABAB P,Q ; R,S *okok
9 1-NSYM G(PQ,RS) ABCD P,Q ; R,S *okok
6 51-50+NSYM G(pq,rs) AAAA p<q ; r<s oKk
7 51-50+NSYM G(pq,rs) AABB p<q ; r<s ok
8 51-50+NSYM G(pq,rs) ABAB p,q ; T,8 koK
9 51-50+NSYM G(pq,rs) ABCD p,q ; T,s * kK

b) Lists used in BCKTRN and ABACUS

1 1-NSYM G(mu,nu,sigma,rho) AAAA mu < nu ; sigma < rho
2 1-NSYM G(mu,nu,sigma,rho) AABB mu < nu ; sigma < rho
3 1-NSYM G(mu,nu,sigma,rho) ABAB mu,nu ; sigma,rho
4 1-NSYM G(mu,nu,sigma,rho) ABCD mu,nu ; sigma,rho

17

In the above, the number of possible sublists defined by the right index
of the list depends upon the symmetry type. Obviously, there
are NIRREP different sublists for symmetry type 1 : 1,1,1,1;

.; NIRREP,NIRREP,NIRREP,NIRREP. For the second symmetry
type, there are NIRREP*(NIRREP-1)/2 different sublists, namely those
for each possible pair of irreps with A < B (A faster running than
B). We have thus 1,1,2,2; 1,1,3,3; 2,2,3,3; NIRREP-1,NIRREP-1,6NIRREP,
NIRREP. The symmetry type ABAB involves also NIRREP*(NIRREP-1)/2
sublists. They are however given in such a way that the main loop
is over IRREP(AB), and the second, faster loop over B with A faster
than B and IRREP(A) < IRREP(B). The fourth symmetry type, ABCD, is
by far the most complicated. The main loop runs first over
IRREP(CD)=IRREP(AB) with a subloop over IRREP(C) and IRREP(D)
in such a way that C is faster than D and IRREP(C) < IRREP(D).
For a given CD (note again IRREP(AB) = IRREP(CD)), the fastest
loops runs over all possible combinations of IRREP(A) and IRREP(B)
with A faster than B, IRREP(A) < IRREP(B) and also (IRREP(A),
IRREP(B)) > IRREP(C),IRREP(D). The loop structure is set up for
example in a very clear way in the routine GAMSRT which might
be consulted for further questions regarding the set up of the loops
and dealing with the AO-two-particle density matrix.

PART II. Extra lists used in excitation energy calculations

J I Quantity Storage Mode
ALL ; FOR
EACH

1-NIRREP 434 C(1J,AB) A,J ; B,I [INCREMENT] *ok ok
1-NIRREP 435 C(ij,ab) a,j ; b,i [INCREMENT] Kk
1-NIRREP 436 C(Ij,Ab) b,j ; A,I [INCREMENT] *ok ok
1-NIRREP 437 C(Ij,Ab) A,T ; b,j [INCREMENT]
1-NIRREP 438 C(Ij,Ab) b,I ; A,j [INCREMENT] Kok k
1-NIRREP 439 C(Ij,Ab) A,j ; b,I [INCREMENT]
1-NIRREP 444 C(AB,1J) A<B ; I<J Kok k
1-NIRREP 445 C(ab,ij) a<b ; i<j ok ok
1-NIRREP 446 C(Ab,Ij) Ab ; I,j
1-NTIRREP 448 D(IJ,AB) A<B I<J

18

1-NIRREP 449 D(ij,ab) a<b ; i<j *okok

1-NIRREP 450 D(Ij,Ab) Ab ; I,j

1-NTIRREP 461 C(AB,1J) A<B ; I<J [INCREMENT] *ok ok
1-NIRREP 462 C(ab,ij) a<b ; i<j [INCREMENT] *ok %
1-NIRREP 463 C(Ab,Ij) A,b ; I,j [INCREMENT]

1-NRECS 470 C vectors (one/record)

1-NRECS 471 HC vectors (one/record)

1 472 Converged right C vector (on one record)

2 472 Converged left C vector (on one record)

1 490 C1(AI) AT

2 490 Ci(ai) ai

3 490 C1(AI) AT [INCREMENT]

4 490 Ci(ai) ai [INCREMENT] KKK
1 491 X(1J) 1J

2 491 X(ij) ij kK
1 492 X(AB) AB

2 492 X(ab) ab ; okok
1 493 X(AI) AB

2 493 X(ai) ab ; *okok
1-NIRREP 94 TDA eigenvectors (one/record)

1-NIRREP 95 TDA eigenvalues (one/record)

E. Common Blocks

The following is a listing of all common blocks which are automatically initialized in
the CRAPSI procedure, and which programs make use of these subroutines. One should
not assume that any of these common blocks have been initialized unless the program uses
them. Initialization of these common blocks depends on logic based on the third argument
passed to CRAPSI, as well as the presence or absence of specific files on disk.

COMMON // ICORE(1)

This is the blank common block which is used for purposes of memory allocation, and
serves to provide an address for the first element of the ICORE array. The value of ICORE(1)
is never used. Used in all programs except aces ii.f, joda.f, vmol.f and vprops.f.

COMMON /CACHEINF/ CACHNUM,CACHNMP1,CACHDIR(100),CACHPOS(100),
& CACHFILE(100) ,CACHMOD (100) ,0LDEST

This common block contains information about the contents of the software I/O cache.

CACHNUM : The total number of records held in the cache; CACHNMP1 : CACHNUM+1;
CACHDIR : The record and file held in each of the 100 positions [these values are bitpacked

19

as follows : Record number (Bits 1-IBITWD*4-3); File number (remaining bits)]; CACHPOS
: The location in ICORE (relative to ICORE(0) !!!' where the record is held; CACHFILE :
The actual unit number of the file associated with the record (i.e. not in general an integer
between 1 and 5, CACHMOD : A flag indicating whether the record has been modified during
its stay in core memory, with a value of 1 indicating modification, 0 otherwise; OLDEST
: The location of the oldest record in the cache, which will be the first one flushed to disk
when a new record must be read from the physical disk. All variables are integers. Used in
post-SCF programs only. (Ed. note : The author of this section must admit that he has

learned a great deal in writing this entry, even though he also authored all of the code for
the I/O cache!)

COMMON /FLAGS/ IFLAGS(100)

The IFLAGS array contains the specified and/or default values of the ACES2 keywords,
and is set in subroutine GTFLGS of joda.f. All values are integers. Used in all program
modules.

COMMON /INFO/ NOCCO(2) ,NVRTO(2)

The information contained in this common block is perhaps obvious. The NOCCO and
NVRTO arrays give the number of occupied and virtual orbitals by spin, irrespective of the
symmetry. All variables are again integers. symmetry. Used in post-SCF programs only.

COMMON /IOPOS/ ICRSIZ,ICHCSZ,IOFF(2),LENREC

This common block contains information about memory usage and details of the software
cache maintained by the ACES 11 I/O subsystem. ICRSIZ : The total working core area (in
integer words) after subsidiary arrays have been allocated (this value is always less than that
specified by the MEMORY _SIZE keyword; ICHCSZ : The size of a cache record in integer
words; IOFF(2) : Not used; LENREC : The length of a physical disk record. The values of
ICHCSZ and LENREC are always the same, and both variables persist for purely historical
reasons. Used in all programs except aces ii.f, joda.f, vmol.f and vprops.f.

COMMON /ISTART/ IO

This is the number of integer words relative to ICORE(0) where the program working
area begins. Thus, the program workspace begins at ICORE(I0), which is the address which
must be passed to dependent subroutines. In general, this is necessary only in the main
program unit. Used in all programs except aces ii.f, joda.f, vmol.f and vprops.f.

COMMON /JOBARC/ MARKER(LENGTH) ,LOC(LENGTH) ,SIZE(LENGTH) ,NRECS,
& IRECWD, IRECLN

20

This common block contains information about the JOBARC and JAINDX files. MARKER

: The eight character string associated with the logical record; LOC : The absolute word ad-
dress of the first element of the record on the JOBARC file; SIZE : The size of the logical
record in integer words; NRECS : The total number of physical records in the JOBARC file;
IRECWD : The total number of integer words per physical record; IRECLN : Apparently
not used. LENGTH is declared in parameter statements in all routines which are related
to JOBARC/JAINDX I/O (DUMPJA, GETREC, JASMRY, PUTREC and ZEROJA). All
variables are integers, as usual. Used in all programs.

COMMON /LISTS/ M0I0(10,500),MOIOWD(10,500) ,MOI0SZ(10,500),
& MOIODS(10,500) ,MOIOFL(10,500)

This common block contains all information needed to retrieve a list from disk. The five
variables are indexed by the list number (right index) and the “sublist” value, which is usu-
ally (but not always!) the symmetry species (left index). The following information is stored
: MOIO : The direct access physical record on which the list begins; MOIOWD : The total
number of words which make up the list; MOIOSZ : The distribution size of the list [length of
the left-hand two indices, which is equivalent to IRPDPD(IRREP,ISYTYP(1,LIST)), where
IRREP is the left-hand index of MOIOSZ]; MOIODS : The number of distributions of the list
[length of the right-hand two indices, which is equivalent to IRPDPD(IRREP,ISYTYP(2,LIST))];
MOIOFL : A value between 1 to 5 which refers to the specific file where the list resides
[1=MOINTS (lists 1-100); 2=GAMLAM (lists 101-200); 3=MOABCD (lists 201- 300);
4=DERGAM (lists 301-400); 5=SECDER (lists 401-500)]. All values are integers. Used
in post-SCF programs only.

COMMON /MACHSP/ IINTLN,IFLTLN,IINTFP,IALONE,IBITWD

This common block contains machine-specific information which is related to the machine
word size. The meaning of the variables is as follows : IINTLN : Length of an integer in bytes;
IFLTLN : Length of a floating point number in bytes; IINTFP : The ratio IFLTLN/IINTLN
; TALONE : The integer value with all bits set to ”1” (i.e. 255 for INTLN=4 and 65535 for
IINTLN=S8); IBITWD : 8*IINTLN/4. The most commonly used variable in this common
block is undoubtedly IINTFP, as it is extremely useful in the coding of memory allocation.
All variables are integers. Used in all programs.

COMMON /MACHSP2/ MASK1,MASK2,ISHFSZ
This common block contains information required for bit packing and bit unpacking of the
CACHDIR variable used in common block /CACHINF/. MASK1 : 2**ISHFSZ-1, MASK2
: 7; ISHFSZ = 4*IBITWD-3. Used in post-SCF programs only.

COMMON /SYM/ POP(8,2),VRT(8,2),NT(2),NFMI(2),NFEA(2)

21

This common block contains information about the distribution of molecular orbitals
among the various symmetry species. POP : The number of occupied orbitals by symmetry
(left index) and spin (right index); VRT : The number of virtual orbitals by symmetry (left
index) and spin (right index); NT : The lengths of both aav and S virtual-occupied vectors
which are overall totally symmetric; NFMI : The lengths of both aa and [occupied-
occupied vectors which are overall totally symmetric; NFEA : The lengths of both aex and
(BB virtual-virtual vectors which are overall totally symmetric. All variables are integers.
Used in post-SCF programs only.

COMMON /SYMINF/ NSTART,NIRREP,IRREPS(255,2) ,DIRPRD(8,8)

This common block contains some rudimentary information which pertains to molecular
symmetry. The meaning of the variables is as follows : NSTART : Not used; NIRREP : The
number of symmetry species in the computational point group; IRREPS(255,2) : Not used;
DIRPRD(8,8) : The direct product table for the symmetry species of the computational
point group. All variables are integers. Used in post-SCF programs only.

COMMON /SYMPOP/ IRPDPD(8,22),ISYTYP(2,500),ID(18)

This common block contains information which is extremely useful in the coding of
contractions. The meaning of the variables is slightly complicated, but worth learning if any
serious coding is being planned. The IRPDPD array contains information about the total
population of all possible two index arrays, by symmetry block. The right-hand index of
IRPDPD refers to the specific type of two-index quantity (such as ab, ai, ij etc.), while the
left-hand index refers to the symmetry block. The 22 different binary combinations are listed
in the subsection entitled “Symmetry Types” below. However, these need not be consulted
that frequently, since the ISYTYP(2,500) array contains these values for all lists on disk.
The left-hand index of ISYTYP refers to the “side” of the list (left-hand or right-hand set
of two indices, as stored) and the right-hand index refers to the list number. For example,
ISYTYP(1,44) tells you the symmetry type (an integer between 1 and 22) for the left-hand
two indices of list 44 (which happens to be a < b). Hence, to determine the number of
a < b combinations belonging to symmetry species 3 (this means that I'; ® ', = 3), one need
only inspect the value of IRPDPD(3,ISYTYP(1,44)). Use of these variables is perhaps most
easily learned by studying pieces of the ACES II source code, particularly programs such as
vee.f, lambda.f and dens.f. The variable ID is not used. All variables are integers. Used in
post-SCF programs only.

This concludes the list of common blocks which are initialized by the CRAPSI subroutine
and are therefore used in most programs. Of course, a number of other common blocks are
used, but these are necessarily specific to the program in which they are used and knowledge
of their content is usually not necessary for program interfacing or developement.

22

F. Symmetry Information

Some useful information regarding the molecular symmetry is stored on the JOBARC file
and is used by various programs in the ACES II program system. In order to understand old
code or to write new code which uses these data structures, a careful reading of this section
is strongly recommended.

For each molecule, two point groups are considered. The first is the actual point group
to which the molecule belongs, and is called the “full” point group (FPG). The second point
group is an Abelian subgroup of the FPG, and is termed the “computational” point group
(CPQ), since it is the group in which the electronic structure calculation is actually per-
formed. The FPG and the CPG are both determined by the JODA program in subroutine
SYMMETRY, and this information is written to the output file. For each group, a large
quantity of information regarding the effects of the operations on the atoms and the opera-
tions themselves are also determined by JODA in subroutine SYMDRYV and its dependents.

F..1 Point Groups

The FPG and CPG are stored on JOBARC in records FULLPTGP and COMPPTGP,
respectively. The order of each group is stored in records FULLORDR and COMPORDR,
respectively. It is usually necessary to know the order of the point group before reading
other JOBARC records dealing with symmetry.

F..2 Symmetry Operations

Subroutine CHRTAB in JODA forms 3x3 Cartesian representations for all symmetry op-
erations in the FPG and the CPG and writes them to the JOBARC file records FULLSYOP
and COMPSYOP, respectively. In subsequent programs, these operations are indexed by
number and are ordered by class as follows:

C; group
Operation 1 is the identity.
C, group
Operation 1 is the identity, operation 2 is 0.
C; group
Operation 1 is the identity, operation 2 is i.
C, groups
Operation j corresponds to C’{;.
D,, groups (n even)

23

Operation Operation

Number Type
1 thrun—2 Ct
n—1 Cy (=C2)
n thrun —1+ 3 C;
n+3 thru 2n —1 C;’
2n E
So, groups

Operation Operation

Number Type

1 thru n Sgi=t x

n+1 thrun CL*

D,, groups (n odd)

Operation Operation

Number Type

1 thru § - Ci

5 thru 2n —1 Cy

2n FE

C,, groups .

Operation Operation

Number Type

1 thru n Sn

n + 1 thru 2n Ci*

Cyy groups (n even)

Operation Operation
Number Type
1 thru n — 2 Cci*
n—1 Cy
n thrun—1+ 3% Oy
n+ % thru2n —1 04
2n E

Cyw groups (n odd)

'The S,, operations are ordered as follows: S,, Spt?, S5, Sptt-.. S27 1 (n odd); Sn, Sy, S5, SI*2, S5,
S3.--8p~1, E (n even, where ¢ = %)

24

Operation Operation

Number Type
1 thru 5 —1 Ci~
5 thru 2n —1 Oy
2n E
D, groups (n even) >
Operation Operation
Number Type
1 thrun — 2 Ci**
n—1 CQ
n thru 2n — 3 Sn
2n — 2 1
2n — 1 thru 2n 4+ % — 2 C,
2n+ 4§ — 1 thru 3n — 2 C,
3n — 1 thru 3n+ 3 — 2 o
3n+ 5 — 1 thru 4n — 2 04
dn — 1 op,
4dn E
D,.;, groups (n odd) 3.
Operation Operation
Number Type
1thrun—1 C! ** pair of operations.
n thru 2n — 2 Sn
2n — 1 thru 3n — 2 Cy
3n — 1 thru 4n — 2 Oy
dn — 1 op
4dn E

D,,4 groups (n even)

2S,, operations ordered as in Cyp,, n even.
3S,, operations ordered as in Cyp,, n odd

25

Operation Operation

Number Type
1 thrun —2 Ct
n—1 Cy(= CF)
n thru 2n — 2 Sl
2n —1 i
2n thru 3n — 1 C,
3n thru 4n — 1 04
4an E
D4 groups (n odd)
Operation Operation
Number Type
1thrun—1 Ct
n thru 2n — 2 Gaiml xx
2n—1 1
2n thru 3n — 1 Cs
3n thru 4n — 1 o4
4n E
T group
Operation Operation
Number Type
1 thru 4 Cs
5 thru 8 C3
9 thru 11 Cy
12 E
T, group
Operation Operation
Number Type
1 thru 6 54
7 thru 9 Cy
10 thru 17 Cs
18 thru 23 04
24 E
Oy, group

26

Operation Operation
Number Type
1 thru 3 Cy
4 thru 6 Sy
7 thru 9 Oh
10 thru 12 C?
13 thru 15 Cy
16 thru 18 Sy
19 thru 24 Cs
25 thru 30 04
31 thru 38 Cs
39 thru 46 Se
47 1
48 E
O group
Operation Operation
Number Type
1 thru 3 04
4 thru 6 02
7 thru 9 Cy
10 thru 15 C,
16 thru 23 Cs
24 E
T}, group
Operation Operation
Number Type
1 thru 3 04
4 thru 6 02
7 thru 10 Cs
11 thru 14 C?
15 thru 18 S(;
19 thru 22 Sz
23 1
24 E
I, group

27

Operation Operation

Number Type
1 thru 6 Cs
7 thru 12 C?
13 thru 18 Sl()
19 thru 24 S3
25 thru 30 Cs
31 thru 36 C?
37 thru 42 510
43 thru 48 SP
49 thru 68 Cs
69 thru 88 Se
89 thru 103 C,
104 thru 118 Oy
119 1
120 E
I group
Operation Operation
Number Type
1 thru 6 05
7 thru 12 C?
13 thru 18 Cs
19 thru 24 C?
25 thru 44 Cy
45 thru 59 Cy
60 E

F..3 Permutation Vectors

For each symmetry operation in the CPG and FPG, a vector is constructed which as-
sociates each atom in the Z-matrix with its image under the transformation. Atoms are
numbered according to their absolute position in the Z-matrix. For example, if operation ¢
maps atom 4 into atom 17, the value of the fourth element of the permutation vector is 17.
These vectors are stored in JOBARC records FULLPERM and COMPPERM, respectively.
The set of permutation vectors is stored on disk as a single vector of length Nomsh, where
h is the order of the point group. Each permutation vector occurs sequentially in the com-
posite record, and follows the ordering of the symmetry operations given in the preceding
subsection.

28

F..4 Orbit-Specific Information

A group of symmetry equivalent atoms is called an orbit. Analysis of symmetry in terms
of the orbits of a molecule is very useful and is used extensively in ACES 11. Information on
JOBARC dealing with the orbits is summarized in the following. Records FULLNORB and
COMPNORB contain the value of the number of orbits in the FPG and CPG, respectively.
Records FULLSTGP and COMPSTGP contain the site group (the subgroup under which
the atoms in the orbit are mapped into themselves by all operations) of each orbit. Records
FULLPOPV and COMPPOPYV contain the number of atoms in each orbit. Finally, the
records FULLMEMB and COMPMEMB order the Z-matrix centers by orbit, so that the
FULLMEMB and FULLPOPV (or COMPMEMB and COMPPOPYV) records can be used
together to list the individual atoms in each orbit.

F..5 Symmetry Types

The post-SCF program modules of ACES 1II assign an integer value to specific binary
combinations of orbital types (occupied or virtual; o or) which is then used to determine
symmetry information (see, for example, the description of the SYMPOP common block).
A complete listing of the assignments for these values is given below

29

“Symmetry Distribution

Number” Type
1 a<b
2 a<b
3 1<]
4 1<]
5 a<b
6 a<b
7 1<
8 i<j
9 ai
10 ai
11 ai
12 ai
13 ab
14 ij
15 ab
16 1a
17 0
18 1a
19 ab
20 ab
21 1]
22 i

Note that entries 13 and 15 are identical, which is simply a result of carelessness in
the initial coding. Although not all possible combinations are given, these are the only
combinations which are used in the distributions which make up the integral lists.

30

